
Using The Borland
Visual Solutions Pack
by Jeroen W Pluimers

Delphi has enormous potential
for using components. Not

only does it have its
own sophisticated VCL-based
components, but it also supports
many of the VBX controls widely
available today.

An introduction to what VBXs
can do for you is the Borland Visual
Solutions Pack (BVSP). Although
not expensive, it contains a
number of useful controls. Note
that when considering other VBXs
you do need to remember that
Delphi only supports Version 1.0
VBXs – if in any doubt, ask your
retailer or (perhaps even better)
the manufacturer.

Installation
Installing VBX controls in Delphi is
easy. For the sake of simplicity, I’ll
assume you are using the default
directory structure. Thus, you
have a directory C:\BVSP which
contains the BVSP files. Also, cre-
ate a subdirectory C:\BVSP\DELPHI,
where we will store the Delphi com-
ponent wrappers around the VBXs.

Let’s start installing. From the
Delphi menu bar, choose Options |
Install Components. Figure 1 shows
the dialog box which is displayed,
listing the components that have
already been installed. Click the
VBX button to enter a file selection
dialog. Navigate to wherever the
VBXs are installed (usually
WINDOWS\SYSTEM) and select the VBX
file you want to install.

After selecting the file, you end
up in the dialog shown in Figure 2.
The defaults are filled in, so you
can just press OK, but you can also
change the name of the unit file or
the classnames of the controls in
the VBX. In this case, I’ve decided
to place the Delphi wrapper unit
files in C:\BVSP\DELPHI. Delphi
automatically generates a Pascal
source unit containing a VCL com-
ponent wrapper around the VBX.

A VBX can contain more than
one component – just like regular
Delphi units, which can contain
more than one component as well.

Although you can install all VBX
files from the BVSP, you do not
need to do so. Some of the VBX
components duplicate functional-
ity that is already included in
Delphi. For instance, the SQC.VBX
(containing Database Controls) is
completely covered by Delphi.
Also you do not need the
SAXTABS.VBX as the Delphi Tabs and
Notebook components give better
functionality.

A summary of the VBXs in the
BVSP which are of use to Delphi
developers is shown in Figure 4.
The column with glyphs shows
you the bitmaps which will appear
on the VBX page of the component
palette. The classname is the hint
text you see when you move the
mouse over the corresponding
glyph. The VBX filename is
included so you can easily select
the VBX files you need.

Using The BVSP VBXs
The BVSP can be split conceptually
into two categories. The first group
consists of VBXs that encapsulate
alone, or in combination with
others, large parts of an applica-
tion. The second group consists of
gadgets: VBXs that perform only a
tiny part of an application, but give
it a specific look and feel.

The charting, spreadsheet and
word-processing VBXs are clearly
part of the first group. Depending
on its usage also the SaxComm VBX
can be added to it. All the other
VBXs are part of the second group.
You will often need to do a lot of
coding yourself to create a fully
functional application around
these components.

With the first group of VBXs, it is
possible to create complete work-
ing applications with almost no

code. For instance, using the
TX4VB.VBX and only a few lines of
code, you can create a working
word-processor that can import
and export rich text format (RTF)
files, with multiple fonts etc.

Gadgets
Not all components from the
second group need much program-
ming. For instance, the animated
button can be used to quickly
create a multi-state button. The
card deck is ideal for setting up a
card game, (it’s a pity the decks
lack animation like Solitaire and
Hearts). With a good playing strat-
egy, you could write your own
black jack game! Combined with
the clock, you can stress the player
by limiting playing time.

The dice can be easily config-
ured. With AutoSize disabled and a
lot of colours on the dice sides, you
could write a program to teach
counting to children.

A combination of gauges, sliders
and spin buttons could be used to
wrap up the user interface for a
scientific program. Then the
marquee control can be used to
show floating text on the screen
(although its performance is
unfortunately not very good).

Fully Fledged Controls
This group contains the really
useful VBXs. Although most of the
controls are not the most recent
versions, you get a good impres-
sion of what is possible with them.
If you make heavy use of any of the
more complete controls, I’d
recommended you buy the full
current version.

For instance, the SAX communi-
cations control lacks certain proto-
cols (like Z-Modem) that are used
very widely nowadays. However, it
is a good starting point if you want
to see what communications could
do for your application.

30 The Delphi Magazine Issue 1

Another useful combination is
the charting control and the
spreadsheet control. This way, you
could show a graphical repre-
sentation of the data a user enters.
Remember, though, that Delphi
itself has a more powerful ChartFX
VBX control.

Figure 3 shows a sample applica-
tion written using the BVSP. With
seven components and about 90
lines of hand-written code, I ended
up with a complete word processor
using the RTF file format. It
supports multiple fonts and pages,
text with attributes, paragraphs,
search & replace, etc.

A large part of the code (almost
20 lines) is to make sure the
TextControl and its bars resize
within the Form. In contrast with
Delphi’s native components, the
VBX controls lack an alignment
property, so you have to do the
aligning yourself.

The rest of the code is for the
File|Open and File|Save/SaveAs
logic. Only a tiny bit of code is
needed to link the menu to the
actions – one line per menu action
suffices.

The resulting application .EXE
file itself is only about 200Kb in
size. The additional files are much
larger: the BIVBX11.DLL (see next
section) is about 80Kb and the
TX4VB.VBX and its support files add
up to 240Kb, giving just over half a
megabyte in total.

The source for this example will
be on the free disk with Issue 2 of
The Delphi Magazine.

Distribution
When distributing an application
you need to pay special attention if
it uses VBXs. You will need to
distribute the VBX files with your
application and be careful to ship
the correct support files. Also, you
will need to include the
BIVBX11.DLL, which is the Borland
support DLL that interfaces
between 16-bit applications and
VBX files.

The reason behind the complex-
ity is twofold. First of all, VBX files
are external DLLs that in turn can
use other external files. Second,
VBXs need to have a means to
distinguish between design-time

Figure 3
A fully functional rich text format word processor built
in Delphi using controls from the Visual Solutions Pack

Figure 1
Installing a
new VBX
into Delphi

Figure 2
Specifying a
Delphi Unit
file name and
Class names
for a new VBX

April 1995 The Delphi Magazine 31

Glyph VBX File Class Name Functionality

ANIBRT.VBX AniButton Animated button with multiple bitmaps. Different frame
states allow simulation of multistate buttons.

KNIFE.VBX PicBuf Picture buffer for editing and showing bitmaps.

MHAL200.VBX MhIAlarm Alarm clock with alarm interval and sound.

MHCD200.VBX MhCardDeck Playing card that mimics the cards used in Solitaire and
Hearts. It supports non-animated card-backs only.

MHCL200.VBX MhClock Digital or analogue clock showing current time, or time
offset to a specific value.

MHDC200.VBX MhDice Playing dice with pictures showing top, left and right sides
of dice. Properties for colours and bitmaps.

MHGA200.VBX Mhgauge Gauges that can be horizontal, vertical, circular with
pointing needles.

MHMQ200.VBX MhMarque Label-like component with moving caption and moving
bitmaps. Attracts attention – ideal for running demos.

MHSL200.VBX MhSlide Slider control useful for simulating audio and
industrial equipment.

MHSN200.VBX MhSpin Spinbutton with embedded value component. Buttons are
either shown horizontally and vertically.

SAXCOMM.VBX Comm Serial communications with TTY and ANSI emulation.
Supports X-modem file transfers.

TKCHART.VBX Chart Chart drawing component. Both application supplied data
and database supplied data.

TX4VB.VBX TextControl Rich text component for editing texts with multiple fonts.
Has hooks for the ruler, buttonbar and statusbar.

TX4VB.VBX TXRuler Ruler component. For showing positional information of
the TextControl.

TX4VB.VBX TXButtonBar Speedbar with buttons and comboboxes to change
appearance of text in the TextControl.

TX4VB.VBX TXStatusBar Status line showing positional information of
the TextControl.

VTSS.VBX Sheet Spreadsheet component. Automatically links to an
SSEdit component for editing if it is available.

VTSS.VBX SSEdit Editor portion of the Sheet spreadsheet component.

Figure 4: Useful VBXs from the Visual Solutions Pack

and run-time behaviour (otherwise
anyone with a VBX could use it to
develop a new application, without
purchasing it).

The technique behind this is
called licensing. Because the VBX
standard was not well designed, it
lacked standard support for licens-
ing. As a result, most VBX vendors
invented their own licensing
mechanism. Mostly, they need spe-

cial design-time files – which are
called licensing files – to be present
in the Windows System directory.
Another way is to have separate
VBX files for design-time and
run-time.

KNIFE.VBX is an example of this
approach – you should be very
careful to copy KNIFERUN.VBX onto
your installation disks and rename
it to KNIFE.VBX at installation time.

All the other installable files are
explained fully in the BVSP
documentation. The file REDIST.TXT
contains more information.

Jeroen Pluimers has been a Pascal
programmer since 1983. He lives
and works in The Netherlands and
may be contacted by email as
jeroenp@dragons.nest.nl or on
CompuServe as 100013,1443

32 The Delphi Magazine Issue 1

	Installation
	Using The BVSP VBXs
	Gadgets
	Fully Fledged Controls
	Distribution

